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1 Introduction

These notes will overview results from [Ohn22] regarding the spaces of Rarita–Schwinger fields on nearly parallel G2

manifolds. Much of the work done there involve general gradients and standard Laplacian operators (see [Hom16,
SW19]). We take a more tensorial approach to arrive at the same conclusions, though the underlying methodology
is similar (squaring the Dirac operator and solving an appropriate system of equations). The author hopes that the
tensorial identities may be of use in the future.

All structures invovled will be smooth unless stated otherwise. On a Riemannian manifold M , we use the metric g
to identify vector fields and 1-forms. Tensor calculations will be done pointwise with respect to a local orthonormal
frame te1, . . . , enu such that ∇iej “ 0 at the center. As such, all indices involved will be subscripts. We employ the
Einstein summation convention throughout, so repeated subscripts are summed over the values 1 to dimM .

Our convention for the Riemann curvature tensor is

RmpX,Y, Z,W q “ x∇X∇Y Z ´ ∇Y ∇XZ ´ ∇rX,Y sZ,W y. (1.1)

2 The Twisted Dirac and Rarita–Schwinger Operators

Let M be a Riemannian spin n-fold with metric g. The spinor bundle S of M is a Dirac bundle and we can define a
Dirac operator D0 : ΓpSq Ñ ΓpSq on it. With respect to a local orthonormal frame, D0 acts on a spinor ϕ by

D0ϕ “
ÿ

i

ei ¨ ∇S
i ϕ. (2.1)

The Dirac operator D0 is self-adjoint with respect to the L2-inner product.

We can embed S into the bundle T˚M b S of spinor-valued 1-forms via the map ι defined by

ιpϕq “ ´
1

n

ÿ

i

ei b rei ¨ ϕs, (2.2)

where te1, . . . , enu is a local orthonormal frame. The map ι has a left inverse given by Clifford multiplication µ,
where

µpX b ϕq “ X ¨ ϕ. (2.3)

Using these two maps, we obtain a decomposition of the bundle T˚M b S into

T˚M b S “ S 1
2

‘ S 3
2
, (2.4)

where we identify S 1
2

“ S with its image under ι and set S 3
2

“ kerµ. We refer to objects in these spaces 1
2 -spinors

and 3
2 -spinors respectively and let pr 1

2
“ ι ˝ µ and pr 3

2
“ id ´ pr 1

2
denote the respective projections onto these

spaces.

We can twist the Dirac operatorD0 with the cotangent bundle to define the twisted Dirac operatorD1 : ΓpT˚MbSq Ñ

ΓpT˚M b Sq given by D1 “ pid b µq ˝ ∇S , which acts locally on decomposable elements as

D1pX b ϕq “ X b pD0ϕq `
ÿ

i

p∇iXq b rei ¨ ϕs. (2.5)
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One may alternatively define this operator as the Dirac operator D1 on T˚M b S with the induced structure given
by

W ¨ pX b ϕq “ X b pW ¨ ϕq (2.6)

and
∇S

W pX b ϕq “ p∇WXq b ϕ`X b p∇S
Wϕq. (2.7)

Indeed, we have
ÿ

i

ei ¨ ∇S
i pX b ϕq “

ÿ

i

ei ¨

”

p∇iXq b ϕ`X b p∇S
i ϕq

ı

“
ÿ

i

p∇iXq b rei ¨ ϕs `X b

”

ÿ

i

ei ¨ p∇S
i ϕq

ı

“
ÿ

i

p∇iXq b rei ¨ ϕs `X b pD0ϕq.

(2.8)

With respect to the decomposition (2.4), we may write D1 in the block matrix form

D1 “

»

–

2´n
n ι ˝D0 ˝ µ 2ι ˝ P˚

2
nP ˝ µ Q

fi

fl , (2.9)

where P “ pr 3
2

˝ ∇S is Penrose operator (see [HS19, Wan91]). The operator Q is called the Rarita–Schwinger
operator, which is a self-adjoint first order differential operator.

Definition 2.1. A Rarita–Schwinger field is a section of S 3
2
which is in the kernel of D1.

These fields were first considered in [RS41] and have since been studied extensively in physics. Recently, Rarita–
Schwinger fields have been a topic of growing focus in the mathematics literature [BM21, HS19, HT20, OT21,
Wan91].

3 Manifolds with G2 Structure

We now review some basics of G2 geometry. For a more in-depth introduction see [Kar20, Sua20].

Definition 3.1. A 3-form on a 7-dimensional manifold M is called positive if for any non-zero Y P TpM ,

pY ⌟ φq ^ pY ⌟ φq ^ φ ‰ 0. (3.1)

A positive 3-form is also called a G2 structure and induces a unique Riemannian metric g and associated volume
form vol by

´
1

6
pY ⌟ φq ^ pZ ⌟ φq ^ φ “ gpY,Zqvol. (3.2)

Remark 3.2. Some authors may omit the minus sign in (3.2), which results in flipping the orientation of the metric.

The metric and volume form in turn induce a Hodge star operator ‹ and a dual 4-form ψ “ ‹φ.

We have the following well-known characterization of 7-manifolds which admit G2 structures which we present
without proof:

Proposition 3.3. A 7-manifold M admits a G2 structure if and only if it is orientable and spinnable.

A G2 structure φ also defines a vector cross-product ˆ which acts by

X ˆ Y “ pY ⌟ rX ⌟ φsq7. (3.3)

There are several important contraction identities which we will employ throughout these notes, their derivations
can be found in [Kar09].

Proposition 3.4. On a manifold M with G2 structure φ, the tensors g, φ and ψ satisfy the following identities:
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• Contractions of φ with φ:

φijkφpqk “ gipgjq ´ giqgjp ´ ψijpq,

φijkφpjk “ gip,

φijkφijk “ 42;

(3.4)

• Contractions of ψ with ψ:

ψijklψpqkl “ 4gipgjq ´ 4giqgjp ´ 2ψijpq,

ψijklψpjkl “ 24gip,

ψijklψijkl “ 168;

(3.5)

• Contractions of φ with ψ:

φijkψpqrk “ gipφjqr ` giqφpjr ` girφpqj ´ gjpφiqr ´ gjqφpir ´ gjrφpqi,

φijkψpqjk “ ´4φipq,

φijkψpijk “ 0.

(3.6)

3.1 Decomposition of Forms and the ˛ Operator

On a manifold M with G2 structure, the bundle ΛpT˚Mq “ ‘7
k“1Λ

kpT˚Mq decomposes fibrewise into irreducible
representations of the group G2. This allows us to decompose the spaces Ωk of k-forms.

Proposition 3.5. On a manifold M with G2 structure φ, the spaces Ω2 and Ω3 of 2- and 3-forms respectively can
be orthogonally decomposed into irreducible G2 representations. In particular, we have

Ω2 “ Ω2
7 ‘ Ω2

14, (3.7)

and
Ω3 “ Ω3

1 ‘ Ω3
7 ‘ Ω3

27. (3.8)

Each space Ωk
ℓ has pointwise dimension ℓ and can be described invariantly as follows:

Ω2
7 “ tX ⌟ φ | X P Xu, (3.9)

Ω2
14 “ tβ P Ω2 | β ^ ψ “ 0u, (3.10)

Ω3
1 “ tfφ | f P Ω0u, (3.11)

Ω3
7 “ tX ⌟ ψ | X P Xu, (3.12)

Ω3
27 “ tγ P Ω3 | γ ^ φ “ γ ^ ψ “ 0u. (3.13)

We may also decompose the spaces of 4- and 5-forms. These can be obtained by applying the Hodge star to those
above.

We have a couple of identities regarding contractions of 2-forms and the 4-form ψ.

Proposition 3.6. Let β7 P Ω2
7 and β14 P Ω2

14 be 2-forms on a manifold M with G2 structure φ. Then

pβ7qpqψijpq “ ´4pβ7qij , (3.14)

pβ14qpqψijpq “ 2pβ14qij . (3.15)

Using the decomposition (3.7), we obtain a full decomposition of the space T 2 of 2-tensors. In particular, we
have

T 2 “ Ω0 ¨ g ‘ S2
0 ‘ Ω2

7 ‘ Ω2
14, (3.16)

where S2
0 denotes the space of traceless symmetric 2-tensors.
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We can define a linear map from the space T 2 of 2-tensors to the space of 3-forms. Given a 2-tensor C, we let C ˛φ
be the 3-form given locally by

pC ˛ φqijk “ Cipφpjk ´ Cjpφpik ` Ckpφpij . (3.17)

It can be shown that the map C ÞÑ C ˛φ is a surjective linear map and its kernel is precisely the space Ω2
14 and that

we have the alternative characterization of the spaces Ω3
1, Ω

3
7, and Ω3

27, that is,

Ω3
1 “ tC ˛ φ | C P Ω0 ¨ gu, (3.18)

Ω3
7 “ tC ˛ φ | C P Ω2

7u, (3.19)

Ω3
27 “ tC ˛ φ | C P S2

0u. (3.20)

We have the following result involving the Hodge star acting on forms in Ω3
27.

Proposition 3.7. Let C P S2
0 be a traceless symmetric 2-tensor on a manifold M with G2 structure φ. If γ “ C ˛φ,

then
p‹γqijkl “ ´Cipψpjkl ` Cjpψpikl ´ Ckpψpijl ` Clpψpijk. (3.21)

3.2 Torsion and Curvature

We recall that a G2 structure φ induces a Riemannian metric g. We can thus consider its Levi-Civita connection ∇.
An important observation about the Levi-Civita covariant derivative of a G2 structure is the following:

Proposition 3.8. Let X P X be a vector field on a manifold M with G2 structure φ. Then the 3-form ∇Xφ lies in
Ω3

7.

Each form in Ω3
7 can be written as Y ⌟ ψ for some vector field Y . This motivates the definition of the torsion

tensor.

Definition 3.9. Let X P X be a vector field on a manifold M with G2 structure φ. We can write

∇Xφ “ T pXq ⌟ ψ

for some vector field T pXq on M . It follows that there exists a 2-tensor T , called the torsion tensor, such that

∇lφijk “ Tlpψpijk. (3.22)

There is an alternative characterization of torsion using decomposition of forms.

Definition 3.10. The torsion forms of a G2 structure φ are

τ0 P Ω0, τ1 P Ω1, τ2 P Ω2
14, τ3 P Ω3

27 (3.23)

which are defined by
dφ “ τ0ψ ` 3τ1 ^ φ` ‹τ3, (3.24)

dψ “ 4τ1 ^ ψ ` ‹τ2. (3.25)

The torsion tensor and torsion forms are related by

T “
1

4
τ0g ´ τ 1

3 ` τ 1
1 ´

1

2
τ2 (3.26)

where τ 1
1 P Ω2

7 and τ 1
3 P S2

0 with τ1 “ pτ 1
1q7
⌟ φ and τ3 “ τ 1

3 ˛ φ.

We obtain 16 classes of G2 structure depending on which components of torsion are non-zero. A few important
classes are the following:

Definition 3.11. A G2 structure φ is said to be:

• closed if dφ “ 0 (or equivalently τ0 “ τ1 “ τ3 “ 0),

• coclosed if dψ “ 0 (or equivalently τ1 “ τ2 “ 0),
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• nearly parallel if τ1 “ τ2 “ τ3 “ 0 (so dφ “ τ0ψ and dψ “ 0),

• torsion-free if dφ “ dψ “ 0.

There is a relation between the torsion of a G2 structure and its curvature. One identity which demonstrates this is
the so-called “G2 Bianchi identity” from [Kar09].

Proposition 3.12. On a manifold M with G2 structure φ, we have

∇iTjk ´ ∇jTik “ TipTjqφpqk `
1

2
Rmijpqφpqk. (3.27)

We also have the following lemma.

Lemma 3.13. On a manifold M with G2 structure φ, we have

Rmipqrψjpqr “ 0. (3.28)

Using the Lemma, we can contract the G2 Bianchi identity to obtain a result regarding the Ricci tensor.

Proposition 3.14. On a manifold M with G2 structure φ, we have

Ricij “ p∇pTiq ´ ∇iTpqqφpqj ´ TipTpj ` ptrT qTij ` TkpTiqψjkpq, (3.29)

3.3 Nearly Parallel G2 Structures

We now discuss nearly parallel G2 structures. We keep this section short by restricting to properties that we will use
in the sequel. Further research on nearly parallel G2 structures can be found in [AS12, DS20, NS21, SWW22].

As we have seen, a G2 structure φ is nearly parallel if the only non-zero component of its torsion is T1. Alternatively,
we have dφ “ τ0ψ and dψ “ 0. When the manifold M is connected, we obtain a condition on the function τ1.

Proposition 3.15. Let M be a connected manifold with nearly parallel G2 structure φ. Then τ1 is constant.

Proof. Applying the exterior derivative to dφ “ τ0ψ and using dψ “ 0 yields

0 “ dτ0 ^ ψ ` τ0dψ “ dτ0 ^ ψ. (3.30)

The map α ÞÑ α ^ ψ defines an isomorphism between Ω1 and Ω5
7, hence dτ0 “ 0. Since M is connected, τ0 must be

constant.

For simplicity, we will henceforth assume that our manifold M is connected.

Using the relation (3.26) between the torsion forms and torsion tensor, we have

T “
1

4
τ0g. (3.31)

Since τ0 is constant, T is parallel. An application of Proposition 3.14 shows that

Ricij “
3

8
τ20 gij , (3.32)

and hence a nearly parallel G2 structure yields an Einstein metric. It then follows that the scalar curvature R is
given by 21

8 τ
2
0 .

When our G2 structure φ is nearly parallel, we obtain nice contractions of the Riemann curvature tensor and the
forms φ and ψ.

Proposition 3.16. On a manifold M with a nearly parallel G2 structure, we have

1

2
Rmijpqφpqk “ ´

1

16
τ20φijk, (3.33)

1

2
Rijpqψpqkl “ Rmijkl `

1

16
τ20

´

gikgjl ´ gilgjk ´ ψijkl

¯

. (3.34)
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Proof. The first identity can be obtained from the G2 Bianchi identity (3.27) by plugging in T “ 1
4τ0g. The second

identity follows from the first and the first identity in (3.4).

An important property of nearly parallel G2 structures is that they admit a real Killing spinor, that is a spinor ϕ
and a constant c satisfying

∇S
Xϕ “ cX ¨ ϕ. (3.35)

In our case, it can be shown that the constant c “ τ0
8 (see [Bär93, BFGK90]).

4 Dirac Bundle Structures

4.1 The Spinor Bundle

We recall that any manifold M admitting a G2 structure is spinnable. We also have that the spinor bundle S of a
7-manifold is a rank 8 real vector bundle. When M is a manifold with G2 structure, there is an identification of
S with the octonion bundle O “ R ‘ TM . The latter bundle is nice to work with since sections on it consist of a
function and a vector field. This is done in [Kar10, Gri17] by identifying S with the octonions. As such, we inherit a
Dirac bundle structure on O. A concrete description of the bundle isomorphism is given in Section 8 of [Gri17]. We
review this structure below and as an abuse of notation, we will use the terms spinors and octionions interchangeably.
Additionally, we will identify the bundles S and O with one another.

Let Y be a vector field on M and let pf, Zq be a spinor. The Clifford multiplication on this bundle is given by
octonionic multiplication:

Y ¨ pf, Zq “ p0, Y q ¨ pf, Zq “ p´xY,Zy, fY ` Y ˆ Zq. (4.1)

In coordinates, this is given by
Y ¨ pf, Zq “ p´YiZi, fYa ` YiZjφijaq. (4.2)

If X is another vector field on M , we can check that the Clifford identity holds:

X ¨ pY ¨ pf, Zqq ` Y ¨ pX ¨ pf, Zqq “ ´2xX,Y ypf, Zq. (4.3)

Further, skew-adjointness of the Clifford multiplication holds: Let ph,W q be another spinor, then

xY ¨ pf, Zq, ph, W qy ` xpf, Zq, Y ¨ ph, W qy “ 0. (4.4)

It has been shown that the spin connection ∇S under the bundle isomorphism is given by the Levi-Civita connection
and the torsion tensor. In particular, we have the following equation:

∇S
Xpf, Zq “ p∇Xf, ∇XZq ` pf, Zq ¨

´

0,
1

2
X ⌟ T

¯

“ p∇Xf, ∇XZq `

´

´
1

2
xZ,X ⌟ T y,

1

2
fpX ⌟ T q `

1

2
Z ˆ pX ⌟ T q

¯

.

(4.5)

Routine calculations show that this operator satisfies the Leibniz rule and that in the special case where φ is a
torsion-free G2 structure, the spin connection ∇S is just the Levi-Civita connection ∇.

One can also verify that this connection is compatible with the induced metric on R ‘ TM and also with the
Levi-Civita connection (see Appendix A).

4.2 The Bundle of Spinor-Valued 1-Forms

We now extend these results to the bundle T˚M b S. The Dirac bundle structure on this bundle is induced by that
of the one on S. Let W , X be 1-forms and let pf, Zq be a spinor. The induced Clifford multiplication on this bundle
is given by

W ¨ rX b pf, Zqs “ X b pW ¨ pf, Zqq (4.6)

extended linearly.

The connection (which we will again denote ∇S) on this bundle is induced by the Levi-Civita connection on M as
well as the spin connection ∇S on S. That is,

∇S
W pX b pf, Zqq “ ∇WX b pf, Zq `X b ∇S

W pf, Zq. (4.7)
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By the linearity of Clifford multiplication as well as the connection, we may instead write these in terms of a 1-form
Y and a 2-tensor C. Define the right action of S on a pair pY,Cq in coordinates by

pY, Cq ¨ pf, Zq “ pfYa ´ CaiZi, fCab ` YaZb ` CaiZjφijbq. (4.8)

Similarly, the Clifford multiplication on the pair pY,Cq by the 1-form X can be written in coordinates by

X ¨ pY, Cq “ p´XiCai, XbYa `XiCajφijbq. (4.9)

These are just the regular octonion and Clifford multiplications on the “right-most” p0, 1q indices of pY,Cq. We then
have

∇S
XpY, Cq “ p∇XY, ∇XCq ` pY, Cq ¨

´

0,
1

2
X ⌟ T

¯

. (4.10)

The fact that ∇S is a metric connection and that it is compatible with the Levi-Civita connection can be done
similarly to the S case which gives us the Dirac bundle structure.

5 The Twisted Dirac Operator

We want to compute the action of the Dirac operator D1 on this bundle. In local coordinates, we have

D1pY,Cq “
ÿ

i

ei ¨ r∇S
i pY,Cqs

“
ÿ

i

ei ¨

”

p∇iY, ∇iCq `

´

´
1

2
xC, ei ⌟ T y,

1

2
Y b pei ⌟ T q `

1

2
C ˆ pei ⌟ T q

¯ı

“
ÿ

i

p´x∇iC, eiy, p∇iY q b ei ` ei ˆ p∇iCqq

`

´

´
1

2
Y xei, ei ⌟ T y ´

1

2
xei, C ˆ pei ⌟ T qy, ´

1

2
xC, ei ⌟ T y b ei `

1

2
Y b pei ˆ pei ⌟ T qq `

1

2
ei ˆ pC ˆ pei ⌟ T qq

¯

“ p´p∇iCaiq, p∇bYaq ` p∇kCalqφklbq

`

´

´
1

2
TiiYa ´

1

2
CakTilφkli,´

1

2
CaiTbi `

1

2
YaTikφikb `

1

2
CakTilφkljφijb

¯

“ p´p∇iCaiq, p∇bYaq ` p∇kCalqφklbq

`

´

´
1

2
TiiYa ´

1

2
CakTilφkli, ´

1

2
CaiTbi `

1

2
YaTikφikb `

1

2
CabTii ´

1

2
CaiTib ´

1

2
CakTilψklbi

¯

(5.1)

Using the decomposition of the torsion tensor (3.26) from before, this may be rewritten as

D1pY,Cq “ p´p∇iCaiq, p∇bYaq ` p∇kCalqφklbq

`

´

´
7

8
τ0Ya ` 3Caipτ1qi, 3Yapτ1qb `

5

8
τ0Cab ` 2Caipτ

1
1qib `

1

2
Caipτ2qib ` Caipτ

1
3qib

¯ (5.2)

5.1 The Nearly Parallel Case

Restricting our attention to the nearly parallel G2 case, we recall that τ1 “ τ2 “ τ3 “ 0. As such, we may write the
Dirac operator D1 as

D1pY,Cq “ p´divC, gradY ` curlCq `

´

´
7

8
τ0Y,

5

8
τ0C

¯

. (5.3)

Here div , grad , and curl are extensions of the usual first-order operators. They act in coordinates by

pdivCqa “ ∇iCai, pgradY qab “ ∇bYa, pcurlCqab “ p∇kCalqφklb. (5.4)

Similarly to the previous section, we can check that

D2
1pY,Cq “ D1p´divC, gradY ` curlCq `D1

´

´
7

8
τ0Y,

5

8
τ0C

¯

“ p´div pgradY q ´ div pcurlCq, ´grad pdivCq ` curl pgradY q ` curl pcurlCqq

`

´7

8
τ0pdivCq,

5

8
τ0pgradY q `

5

8
τ0pcurlCq

¯

`

´

´
5

8
τ0pdivCq, ´

7

8
τ0pgradY q `

5

8
τ0pcurlCq

¯

`

´49

64
τ20Y,

25

64
τ20C

¯

.

(5.5)
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We have the following identities for the second-order terms appreaing in the above equation:

Proposition 5.1. On a manifold M with nearly parallel G2 structure φ, we have

rcurl pgradY qsab “ ´
1

16
τ20Ypφpab, (5.6)

´rdiv pcurlCqsa “ ´
1

16
τ20Cpqφpqa, (5.7)

´rdiv pgradY qsa “ p∆Y qa, (5.8)

rcurl pcurlCqsab ´ rgrad pdivCqsab “ p∆Cqab ´ 2RmpabqCpq ´ τ0pcurlCqab

`
3

8
τ20Cab ´

1

16
τ20Cba `

1

16
τ20Cppgab `

1

16
τ20Cpqψpqab.

(5.9)

Proof. We prove these identities in coordinates. First, we have

curl pgradY q “ p∇ipgradY qajqφijb “ p∇i∇jYaqφijb “
1

2
rp∇i∇j ´ ∇j∇iqYasφijb

“ ´
1

2
RmijapYpφijb “

1

16
τ20Ypφapb “ ´

1

16
τ20Ypφpab.

(5.10)

Next, we check

´rdiv pcurlCqsa “ ´∇kpcurlCqak “ ´∇krp∇iCajqφijks “ ´p∇k∇iCajqφijk ´ p∇iCajqp∇kφijkq

“ ´
1

2
rp∇k∇i ´ ∇i∇kqCajsφijk `

1

4
τ0p∇iCajqψkijk “

1

2
pRmkiapCpj ` RmkijpCapqφijk

“ ´
1

16
τ20Cpjφapj ´

1

16
τ20Capφjpj

“ ´
1

16
τ20Cpqφpqa.

(5.11)

We also have
´rdiv pgradY qsa “ ´∇kpgradY qak “ ´∇k∇kYa “ p∆Y qa. (5.12)

Lastly,
rcurl pcurlCqsab ´ rgrad pdivCqsab

“ p∇ipcurlCqajqφijb ´ ∇bpdivCqa

“ ∇irp∇kCalqφkljsφijb ´ p∇b∇iCaiq

“ p∇i∇kCalqφkljφijb ` p∇kCalqp∇iφkljqφijb ´ p∇b∇iCaiq

“ p∇i∇bCaiq ´ p∇i∇iCabq ´ p∇i∇kCalqψklbi `
1

4
τ0p∇kCalqψikljφijb ´ p∇b∇iCaiq

“ ´p∇i∇iCabq ` rp∇i∇b ´ ∇b∇iqCais ´
1

2
rp∇i∇k ´ ∇k∇iqCalsψklbi ´ τ0p∇kCalqφklb

“ ´p∇i∇iCabq ´ pRmibapCpi ` RmibipCapq

`
1

2
pRmikapCpl ` RmiklpCapqψklbi ´ τ0p∇kCalqφklb

“ ´p∇i∇iCabq ´ RmpabiCpi ` RicbpCap

`

”

Rmambl `
1

16
τ20 pgabgml ´ galgmb ´ ψamblq

ı

Cml ´ τ0p∇kCalqφklb

“ ´p∇i∇iCabq ´ RmpabqCpq ` RicbpCap

´ RmmablCml `
1

16
τ20Cllgab ´

1

16
τ20Cba `

1

16
τ20ψabmlCml ´ τ0p∇kCalqφklb

“ p∆Cqab ´ 2RmpabqCpq ´ τ0pcurlCqab

`
3

8
τ20Cab ´

1

16
τ20Cba `

1

16
τ20Cppgab `

1

16
τ20Cpqψpqab

(5.13)
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As a result, we may write

D2
1pY,Cq “ pp∆Y qa, p∆Cqab ´ 2RmpabqCpqq `

1

4
τ0ppdivCqa,´pgradY qab ` pcurlCqabq

`
49

64
τ20 pYa, Cabq `

1

16
τ20 p´Cpqφpqa, ´Ypφpab ` Cppgab ´ Cba ` Cpqψpqabq.

(5.14)

5.2 Laplacian Operators

We now discuss the properties of certain Laplacian operators acting on 2-tensors. Given a 2-tensor C, we may
decompose it into a symmetric component C` P Ω0 ¨ g ‘ S2

0 and an antisymmetric component C´ P Ω2
7 ‘ Ω2

14. On
symmetric 2-tensors, we have the Lichnerowicz Laplacian ∆L, which acts on C` by

p∆LC
`qab “ p∆C`qab ` RicapC

`
pb ` RicbpC

`
ap ´ 2RmpabqC

s
pq “ p∆C`qab `

3

4
τ20C

`
ab ´ 2RmpabqC

`
pq. (5.15)

On the other hand, we have the Hodge Laplacian on 2-forms, which by direct computation acts in a similar fashion
on C´ by

p∆dC
´qab “ pdd˚C´qab ` pd˚dC´qab

“ ∇apd˚C´qb ´ ∇bpd˚C´qa ´ ∇ppdC´qpab

“ ∇ap´∇pC
´
pbq ´ ∇bp´∇pC

´
paq ´ ∇pp∇pC

´
ab ´ ∇aC

´
pb ` ∇bC

´
paq

“ ´∇p∇pC
´
ab ` rp∇p∇a ´ ∇a∇pqC´

pbs ´ rp∇p∇b ´ ∇b∇pqsC´
pa

“ p∆C´qab ´ RmpapmC
´
mb ´ RmpabmC

´
pm ` RmpbpmCma ` RmpbamCpm

“ p∆C´qab ` RicamC
´
mb ´ RmpabmC

´
pm ´ RicbmCma ´ RmmabpCmp

“ p∆C´qab `
3

4
τ20C

´
ab ´ 2RmpabqC

´
pq.

(5.16)

For simplicity, we use ∆d{L to denote the operator on a 2-tensor which acts as the Lichnerowicz Laplacian on its
symmetric part and the Hodge Laplacian on its antisymmetric part.

Recalling that
p∆dY qa “ pdd˚Y qa ` pd˚dY qa

“ ∇apd˚Y q ´ ∇ppdY qpa

“ ∇ap´∇pYpq ´ ∇pp∇pYa ´ ∇aYpq

“ ´∇p∇pYa ` rp∇p∇a ´ ∇a∇pqYps

“ p∆Y qa ´ RmpapmYm

“ p∆Y qa ` RicamYm

“ p∆Y qa `
3

8
τ20Ya,

(5.17)

we may then write

D2
1pY,Cq “ pp∆dY qa, p∆d{LCqabq `

1

4
τ0ppdivCqa, ´pgradY qab ` pcurlCqabq

` τ20

´25

64
Ya,

1

64
Cab

¯

`
1

16
τ20 p´Cpqφpqa, ´Ypφpab ` Cppgab ´ Cba ` Cpqψpqabq.

(5.18)

Before we compute the Rarita–Schwinger fields, we first note how the Lichnerowicz Laplacian splits with respect to
the decomposition S2 “ Ω0 ¨ g ‘ S2

0 .

We may write any symmetric 2-tensor C` as
C` “ fg ` C27 (5.19)

where f P Ω0, and C27 P S2
0 . We compute how the Lichnerowicz Laplacians interact with each component of C.

First, direct computations show that

p∆Lpfgqqab “ ´∇p∇ppfgabq `
3

4
τ20 pfgabq ´ 2Rmiabjpfgijq

“ ´p∇p∇pfqgab `
3

4
fτ20 gab ´ 2fRicab

“ p∆fqgab.
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It then follows that ∆Lpfgq “ p∆fqg and so ∆Lpfgq P Ω0 ¨ g.

Next, we can check that

p∆LC27qab “ ´∇p∇ppC27qab `
3

4
τ20 pC27qab ´ 2RmiabjpC27qij

“ ´∇p∇ppC27qba `
3

4
τ20 pC27qba ´ 2RmjbaipC27qji

“ p∆LC27qba

and

p∆LC27qii “ ´∇p∇ppC27qii `
3

4
τ20 pC27qii ´ 2RmkiilpC27qkl

“ ´2RicklpC27qkl

“ ´
3

4
τ20 gklpC27qkl

“ 0.

Thus ∆LC27 is both symmetric and traceless and so ∆LC27 P S2
0 . From this we see that ∆L splits with respect to

the decomposition S2 “ Ω0 ¨ g ‘ S2
0 of symmetric tensors.

5.3 1
2
- and 3

2
-Spinors

We recall the decomposition T˚M b S “ S 1
2

‘ S 3
2
.

Using the projection maps, we can compute the spaces S 1
2
and S 3

2
on a manifold with G2 structure.

pr 1
2

pY, Cq “ ι ˝ µpY, Cq

“ ι
´

ÿ

i

ei ¨ pYi, Cibq

¯

“ ιp´Cii, Ya ` Cklφklbq

“ ´
1

7

ÿ

j

ej b rej ¨ p´Cii, Ya ` Cklφklbqs

“ ´
1

7
p´Ya ´ Cklφkla, ´Ckkgab ´ Ylφlab ` Cba ´ Cab ` Cklψklabq

“
1

7
pYa ` Cklφkla, Ckkgab ` Ylφlab ` Cab ´ Cba ´ Cklψklabq

Using the decomposition T 2 “ Ω0 ¨ g ‘ S2
0 ‘ Ω2

7 ‘ Ω2
14, we can write C “ fg ` C27 ` Z ⌟ φ ` C14. By considering

the appropriate terms, we can see that

pr 1
2

pY, fg ` C27 ` Z ⌟ φ` C14q “

´1

7
Y `

6

7
Z, fg `

”1

7
Y `

6

7
Z

ı

⌟ φ
¯

. (5.20)

Taking the complement, we also see that

pr 3
2

pY, fg ` C27 ` Z ⌟ φ` C14q “

´6

7
Y ´

6

7
Z, C27 `

”6

7
Y ´

6

7
Z

ı

⌟ φ` C14

¯

. (5.21)

It follows that S 1
2
consists of elements of the form

pY, fg ` Y ⌟ φq (5.22)

and S 3
2
consists of elements of the form

´

Y,C27 ´
1

6
Y ⌟ φ` C14

¯

. (5.23)
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5.4 Rarita–Schwinger Fields

We now compute the space of Rarita–Schwinger fields.

Theorem 5.2. On a compact manifold M with nearly parallel G2 structure φ, the space of Rarita–Schwinger fields
is isomorphic to the space

!

C P S2
0 | divC “ 0, curlC “ ´

5

8
τ0C

)

“

!

C P S2
0 | divC “ 0, ∆LC “

13

64
τ20C

)

. (5.24)

Proof. Since D1 is self-adjoint and M is compact, we have

D1pY, Cq “ 0 ðñ D2
1pY, Cq “ 0. (5.25)

Our previous discussion shows that

D1pY, Cq “ 0 ðñ

#

´p∇iCaiq ´ 7
8τ0Ya “ 0,

p∇bYaq ` p∇kCalqφklb ` 5
8τ0Cab “ 0.

(5.26)

and that

D2
1pY, Cq “ 0 ðñ

$

’

’

&

’

’

%

p∆dY qa ` 1
4τ0p∇iCaiq ` 25

64τ
2
0Ya ´ 1

16τ
2
0Cpqφpqa “ 0,

p∆d{LCqab ´ 1
4τ0p∇bYaq ` 1

4τ0p∇iCajqφijb

` 1
64τ

2
0Cab ´ 1

16τ
2
0Ypφpab ` 1

16τ
2
0Cppgab ´ 1

16τ
2
0Cba ` 1

16τ
2
0Cpqψpqab “ 0.

(5.27)

Applying ´∇b to the second equation in (5.26), we get

0 “ ´∇b∇bYa ´ ∇brp∇kCalqφklbs ´
5

8
τ0∇bCab

“ ´∇b∇bYa ´ p∇b∇kCalqφklb ´ p∇kCalqp∇bφklbq ´
5

8
τ0∇bCab

“ ´∇b∇bYa ´
1

2
rp∇b∇k ´ ∇k∇bqCalsφklb ´

1

4
τ0p∇kCalqψbklb ´

5

8
τ0∇bCab

“ ´∇b∇bYa `
1

2
pRmbkamCmlφklb ` RmbklmCamφklbq ´

5

8
τ0∇bCab

“ ´∇b∇bYa ´
1

16
τ20Cmlφaml ´

5

8
τ0∇bCab.

Substituting in the first equation, we get

0 “ ´∇b∇bYa `
35

64
τ20Ya ´

1

16
τ20Cmlφmla “ p∆dY qa `

11

64
τ20Ya ´

1

16
τ20Cmlφmla.

We recall that since we are restricting our attention to S 3
2
, the spinor-valued 1-form pY, Cq is of the form

pY, Cq “

´

Y, C27 ´
1

6
Y ⌟ φ` C14

¯

.

It follows that
Cmlφmla “ ´Ya.

Plugging this into our earlier result, we get that

p∆dY qa `
15

64
Ya “ 0,

and since the Hodge Laplacian has no negative eigenvalues, we must have Y “ 0.

This reduces the second equation in (5.26) to

p∇kCalqφklb “ ´
5

8
τ0Cab. (5.28)
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We can plug this and Y “ 0 into the second equation of (5.27) results in

p∆d{LCqab ´
9

64
τ20Cab ´

1

16
τ20Cba `

1

16
τ20Ckkgab `

1

16
τ20Cijψiabj “ 0.

Now using the decomposition C “ C27 ` C14, we get an equation for C27 and another for C14:

p∆LC27qab ´
13

64
τ20 pC27qab ` p∆dC14qab `

3

64
τ20 pC14qab “ 0. (5.29)

The terms involving C27 all lie in the space S2
0 and those involving C14 all lie in the space Ω2. As these spaces are

orthogonal, we may consider two separate equations

p∆LC27qab ´
13

64
τ20 pC27qab “ 0

p∆dC14qab `
3

64
τ20 pC14qab “ 0.

(5.30)

As before, the Hodge Laplacian has no negative eigenvalues, and so C14 “ 0. Plugging this in, we see that the space
of Rarita–Schwinger fields is isomorphic to

!

C P S2
0 | divC “ 0, curlC “ ´

5

8
τ0C

)

“

!

C P S2
0 | divC “ 0, ∆LC “

13

64
τ20C

)

(5.31)

as desired.

Remark 5.3. The same equations can be used to find Rarita–Schwinger fields in the case where φ is a torsion-free G2

structure. Here, τ0 “ 0 so we can conclude that Y must be a harmonic 1-form, leaving only the equation ∆d{LC “ 0.

When φ is torsion-free, both the Hodge and Lichnerowicz Laplacians split with respect to our decompositions and
so ∆dC14 “ 0 and ∆LC27 “ 0. Finally, one can show that

∆LC27 “ 0 ðñ ∆dpC27 ˛ φq “ 0 (5.32)

hence the space of Rarita–Schwinger fields in the torsion-free case is isomorphic to

H1 ‘ H2
14 ‘ H3

27, (5.33)

which has dimension equal to b1 ` b214 ` b327. This result was originally proven by [Wan91].

We recall that an Einstein metric g on a manifold M is called linearly unstable if there exists a non-zero 2-tensor
that is transverse traceless, that is,

divh “ 0 and trh “ 0, (5.34)

such that
ż

M

xp∆L ´ 2λqh, hy ă 0, (5.35)

where λ denotes the Einstein constant. The metric g is called stable otherwise. If g were a stable Einstein metric, we
can see that the Lichnerowicz Laplacian cannot have eigenvalues less than 2λ when restricted to transeverse traceless
tensors.

The conditions from the previous theorem tell us that C must be transverse traceless. Since 13
64τ

2
0 ă 3

4τ
2
0 “ 2λ, we

obtain the following corollary.

Corollary 5.4. If M is a manifold with nearly parallel G2 structure φ and g is a stable metric, then the space of
Rarita–Schwinger fields is trivial.

We end this with yet another characterization of the space of Rarita–Schwinger fields, matching that of [Ohn22].

Corollary 5.5. On a compact manifold M with nearly parallel G2 structure φ, the space of Rarita–Schwinger fields
is isomorphic to the space

!

γ P Ω3
27 | ‹dγ “ ´

1

8
τ0γ

)

. (5.36)
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Proof. Recall that we have an isomorphism between the spaces S2
0 and Ω3

27 given by the ˛ operator. If C P S2
0 , then

its corresponding γ “ C ˛ φ is determined by

γijk “ Cipφpjk ´ Cjpφpik ` Ckpφpij . (5.37)

By (3.21), we have
p‹γqijkl “ ´Ciqψqjkl ` Cjqψqikl ´ Ckqψqijl ` Clqψqijk. (5.38)

We can compute that

p‹dγqijk “ pd˚ ‹ γqijk

“ ´∇pp‹γqpijk

“ ∇ppCpqψqijkq ´ ∇ppCiqψqpjkq ` ∇ppCjqψqpikq ´ ∇ppCkqψpqijq

“ p∇pCpqqψqijk ` Cpqp∇pψqijkq ´ p∇pCiqqψqpjk ´ Ciqp∇pψqpjkq

` p∇pCjqqψqpik ` Cjqp∇pψqpikq ´ p∇pCkqqψpqij ´ Ckpp∇pψpqijq

“ p∇pCpqqψqijk ´ p∇pCiqqψqpjk ` p∇pCjqqψqpik ´ p∇pCkqqψpqij

´
1

4
τ0Cpq

´

gpqφijk ´ gpiφqjk ` gpjφqik ´ gpkφqij

¯

`
1

4
τ0Ciq

´

gpqφpjk ´ gppφqjk ` gpjφqpk ´ gpkφqpj

¯

´
1

4
τ0Cjq

´

gpqφpik ´ gppφqik ` gpiφqpk ´ gpkφqpi

¯

`
1

4
τ0Ckq

´

gpqφpij ´ gppφqij ` gpiφqpj ´ gpjφqpi

¯

“ p∇pCpqqψqijk ´ p∇pCiqqψqpjk ` p∇pCjqqψqpik ´ p∇pCkqqψpqij

´
3

4
τ0

´

Ciqφqjk ´ Cjqφqik ` Ckqφqij

¯

“ p∇pCpqqψqijk ´ p∇pCiqqψqpjk ` p∇pCjqqψqpik ´ p∇pCkqqψpqij ´
3

4
τ0γijk.

(5.39)

From Theorem 5.2 the space of Rarita–Schwinger fields is isomorphic to the space

!

C P S2
0 | divC “ 0, curlC “ ´

5

8
τ0C

)

“

!

C P S2
0 | divC “ 0, ∆LC “

13

64
τ20C

)

. (5.40)

Suppose C is an element of the above space. Since curlC “ ´ 5
8τ0C, we have

´ p∇pCiqqψqpjk ` p∇pCjqqψqpik ´ p∇pCkqqψpqij

“ ´p∇pCiqq

´

φqplφjkl ´ gqjgpk ` gqkgpj

¯

` p∇pCjqq

´

φqplφikl ´ gqigpk ` gqkgpi

¯

´ p∇pCkqq

´

φqplφijl ´ gqigpj ` gqjgpi

¯

“
5

8
τ0Cilφjkl ` ∇kCij ´ ∇jCik ´

5

8
τ0Cjlφikl ´ ∇kCji ` ∇iCjk

`
5

8
τ0Cklφijl ` ∇jCki ´ ∇iCkj

“
5

8
τ0

´

Ciqφqjk ´ Cjqφqik ` Ckqφqij

¯

“
5

8
τ0γijk.

(5.41)

Further, since divC “ 0, we have
p∇pCpqqψqijk “ 0. (5.42)

Combining these together, we get

p‹dγqijk “ ´
1

8
τ0γijk, (5.43)
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as desired.

Conversely, suppose that γ satisfies ‹dγ “ ´ 1
8τ0γ. We can again check that

´ p∇pCiqqψqpjk ` p∇pCjqqψqpik ´ p∇pCkqqψpqij

“ ´p∇pCiqq

´

φqplφjkl ´ gqjgpk ` gqkgpj

¯

` p∇pCjqq

´

φqplφikl ´ gqigpk ` gqkgpi

¯

´ p∇pCkqq

´

φqplφijl ´ gqigpj ` gqjgpi

¯

“ p∇pCiqqφpqlφljk ` ∇kCij ´ ∇jCik ´ p∇pCjqqφpqlφlik ´ ∇kCji ` ∇iCjk

` p∇pCkqqφpqlφlij ` ∇jCki ´ ∇iCkj

“ p∇pCiqqφpqlφljk ´ p∇pCjqqφpqlφlik ` p∇pCkqqφpqlφlij

“ pcurlC ˛ φqijk.

(5.44)

As such

´
1

8
τ0γijk “ ´p∇pCpqqψqijk ` pcurlC ˛ φqijk ´

3

4
τ0γijk. (5.45)

We can check that curlC lies entirely in S2
0 . First, we have

pcurlCqii “ p∇pCiqqφpqi “ ∇ppCiqφpqiq ´ Ciqp∇pφpqiq “ ´
1

4
τ0Ciqψppqi “ 0, (5.46)

and so curlC is traceless.

Contract curlC on both indices with φ, we can see that its associated vector field is

pcurlCqijφijk “ p∇pCiqqφpqjφijk

“ p∇pCiqq

´

gpkgqi ´ gpigqk ´ ψpqki

¯

“ p∇kCqqq ´ p∇pCpkq ´ p∇pCiqqψpqki

“ ´p∇pCpkq ´ ∇ppCiqψpqkiq ` Ciqp∇pψpqkiq

“ ´p∇pCpkq ´
τ0
4
Ciq

´

gppφqki ´ gpqφpki ` gpkφpqi ´ gpiφpqk

¯

“ ´p∇pCpkq.

(5.47)

Hence its Ω2
7 component is

rπ7pcurlCqskl “ ´
1

6
p∇pCpqqφqkl. (5.48)

The equation ‹dγ “ ´ 1
8τ0γ lies entirely in Ω3

27. Since

´
1

6

´

pdivCq ⌟ φ
¯

˛ φ “
1

2
pdivCq ⌟ ψ, (5.49)

we must have divC “ 0.

We also note that our assumption regarding γ implies that it is coclosed since

d˚γ “ ´8τ´1
0 d˚ ‹ dγ “ 8τ´1

0 ‹ d ‹ ‹dγ “ 8τ´1
0 ‹ d2γ “ 0. (5.50)

We can check that

pd˚γqij “ ´∇pγpij

“ ´∇p

´

Cpqφqij ´ Ciqφqpj ` Cjqφqpi

¯

“ ´p∇pCpqqφqij ´ Cpqp∇pφqijq ` p∇pCiqqφqpj ` Ciqp∇pφqpjq ´ p∇pCjqqφqpi ´ Cjqp∇pφqpiq

“
1

4
τ0Cpqψpqij ´ pcurlCqij ´

1

4
τ0ψpqpj ` pcurlCqji `

1

4
τ0Cjqψpqpi

“ ´2rπ14pcurlCqsij ,

(5.51)
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and so curlC lies entirely in S2
0 .

Using (5.39), we have that

´
1

8
τ0C ˛ φ “

´

pcurlCq ´
3

4
τ0C

¯

˛ φ. (5.52)

We then get an equation in S2
0

´
1

8
τ0C “ curlC ´

3

4
τ0C, (5.53)

and we can conclude that curlC “ ´ 5
8τ0C as desired.

A Compatibility of the Spin Connection

In this appendix, we verify the compatibility of the spin connection ∇S on the octonion bundle O.

We check that ∇S is a metric connection and that it is compatible with the Levi-Civita connection ∇. First, to see
that ∇S is a metric connection, we compute:

∇Xxpf, Zq, ph,W qy “ ∇Xpfh` xZ,W yq

“ p∇Xfqh` fp∇Xhq ` x∇XZ,W y ` xZ,∇XW y

“ Xkp∇kfqh` fXkp∇khq `Xkp∇kZiqWi ` ZiXkp∇kWiq.

x∇S
Xpf, Zq, ph,W qy “ xp∇Xf,∇XZq, ph,W qy

`

A´

´
1

2
xZ,X ⌟ T y,

1

2
fpX ⌟ T q `

1

2
Z ˆ pX ⌟ T q

¯

, ph,W q

E

“ p∇Xfqh` x∇XZ,W y

´
1

2
xZ,X ⌟ T yh`

1

2
fxX ⌟ T,W y `

1

2
xZ ˆ pX ⌟ T q,W y

“ Xkp∇kfqh`Xkp∇kZiqWi ´
1

2
ZiXpTpih`

1

2
fXpTpiWi `

1

2
ZkXpTplφkliWi.

xpf, Zq,∇S
Xph,W qy “ xpf, Zq, p∇Xh,∇XW qy

`

A

pf, Zq,
´

´
1

2
xW,X ⌟ T y,

1

2
hpX ⌟ T q `

1

2
W ˆ pX ⌟ T q

¯E

“ fp∇Xhq ` xZ,∇XW y

´
1

2
fxW,X ⌟ T y `

1

2
hxZ,X ⌟ T y `

1

2
xZ,W ˆ pX ⌟ T qy

“ fXkp∇khq ` ZiXkp∇kWiq ´
1

2
fWiXpTpi `

1

2
hZiXpTpi `

1

2
ZiWkXpTplφkli.

(A.1)

Comparing the equations above yields

∇Xxpf, Zq, ph,W qy “ x∇S
Xpf, Zq, ph,W qy ` xpf, Zq,∇S

Xph,W qy (A.2)

as desired.
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Next, we check compatibility with the Levi-Civita connection:

∇S
X rY ¨ pf, Zqs “ ∇S

Xp´xY,Zy, fY ` Y ˆ Zqq

“ p´∇XxY,Zy,∇XpfY q ` ∇XpY ˆ Zqq

`

´

´
1

2
fxY,X ⌟ T y ´

1

2
xY ˆ Z,X ⌟ T y,´

1

2
xY,ZypX ⌟ T q `

1

2
fY ˆ pX ⌟ T q `

1

2
pY ˆ Zq ˆ pX ⌟ T q

¯

“

´

´Xkp∇kYiqZi ´ YiXkp∇kZiq, Xkp∇kfqYa ` fXkp∇kYaq `Xkp∇kYiqZjφija ` YiXkp∇kZjqφija ` YiZjXkp∇kφijaq

¯

`

´

´
1

2
fYiXpTpi ´

1

2
YkZlφkliXpTpi,´

1

2
YiZiXpTpa `

1

2
fYiXpTpjφija `

1

2
YkZlφkliXpTpjφija

¯

“

´

´Xkp∇kYiqZi ´ YiXkp∇kZiq ´
1

2
fYiXpTpi ´

1

2
YkZlφkliXpTpi,

Xkp∇kfqYa ` fXkp∇kYaq `Xkp∇kYiqZjφija ` YiXkp∇kZjqφija ` YiZjXkTkpψpija

´
1

2
YiZiXpTpa `

1

2
fYiXpTpjφpja `

1

2
YkZaXpTpk ´

1

2
YaTkXpTpk ´

1

2
YkZlXpTpjψklja

¯

“

´

´Xkp∇kYiqZi ´ YiXkp∇kZiq ´
1

2
fYiXpTpi ´

1

2
YkZlφkliXpTpi,

Xkp∇kfqYa ` fXkp∇kYaq `Xkp∇kYiqZjφija ` YiXkp∇kZjqφija `
1

2
YiZkXkTkpψpija

´
1

2
YiZiXpTpa `

1

2
fYiXpTpjφpja `

1

2
YkZaXpTpk ´

1

2
YaTkXpTpk

¯

.

p∇XY q ¨ pf, Zq “ p´x∇XY,Zy, fp∇XY q ` p∇XY q ˆ Zq

“

´

´Xkp∇kYiqZi, fXkp∇kYaq `Xkp∇kYiqZjφija

¯

.

Y ¨ r∇S
Xpf, Zqs “ Y ¨

”

p∇Xf,∇XZq `

´

´
1

2
xZ,X ⌟ T y,

1

2
fpX ⌟ T q `

1

2
Z ˆ pX ⌟ T q

¯ı

“ p´xY,∇XZy, p∇XfqY ` Y ˆ p∇XZqq

`

´

´
1

2
fxY,X ⌟ T y ´

1

2
xY,Z ˆ pX ⌟ T qy,´

1

2
xZ,X ⌟ T yY `

1

2
fY ˆ pX ⌟ T q `

1

2
Y ˆ pZ ˆ pX ⌟ T qq

¯

“

´

´ YiXkp∇kZiq, Xkp∇kfqYa ` YiXkp∇kZjqφija

¯

`

´

´
1

2
YiXpTpi ´

1

2
YiZkXpTplφkli,´

1

2
ZiXpTpiYa `

1

2
fYiXpTpjφija `

1

2
YiZkXpTplφkljφija

¯

“

´

´ YiXkp∇kZiq ´
1

2
YiXpTpi ´

1

2
YiZkXpTplφkli,

Xkp∇kfqYa ` YiXkp∇kZjqφija ´
1

2
ZiXpTpiYa `

1

2
fYiXpTpjφija

`
1

2
YiZaXpTpi ´

1

2
YiZiXpTpa ´

1

2
YiZkXpTplψklai

¯

.

(A.3)
Again, by comparing the equations, we conclude that

∇S
X rY ¨ pf, Zqs “ p∇XY q ¨ pf, Zq ` Y ¨ r∇S

Xpf, Zqs (A.4)

and so ∇S is compatible with ∇.
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